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Real Physical Systems:

*Display random and systematic variation- geometry, materials,

boundary conditions, initial conditions, excitations

*Vary from one realization to the next

*Display behavior that cannot be precisely measured

Uncertainty occurs in various forms:

eIrreducible, variability, aleatoric

*Reducible, epistemic, subjective, model form uncertainty
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Useful in;

* Analysis and Design

—To assess the reliability of physical systems.

—To establish designs that satisfy pre-established reliability requirements.

—To establish sensitivities to key uncertainties

» Model validation, certification, and accreditation

—As defined in the DOE Defense Programs (DOE/DP) ASCI Program Plan,
validation is the process of determining the degree to which a computer

model is an accurate representation of the real world from the perspective
of the intended model applications.

—Convey confidence in predictions to decision makers
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General Description:

f—— M(X) ——=U

X : vector of uncertain parameters
M: a deterministic mapping
U : output(s) of system
f . input(s) to system
Statistical Approach:

« Model components of X as Random Variables or Fields, and f as
(possibly) Random External Input

« Seek quantities such as E[g(U)] . However, what is actually
obtained are conditional statistics E[g(U)|M].
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Conclusion: Need a Generalized Outlook.

Essential Elements of a Statistical Approach:

« Random External Inputs

« Propagation Techniques

—Analytical Reliability Methods; Sampling; Response Surface
Approximations; Stochastic Finite Element Methods.

e Characterization of Models
—Verification and Validation.

Random external Ioads
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Uncertainty due to External Loads: (f)

- Random Vibration

- Earthquake Engineering

- Ocean Engineering

- Weapons Applications:
Launch Shocks/Re-entry Loads,
Penetration Loads,
Hostile Environments
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Uncertainty Propagation: (X)

Effects of parametric uncertainty:

Intrinsic variabilities, Tolerances,
Lack of repeatability







Uncertainty Quantification at Sandia-NM
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« DAKOTA (Design Analysis Kit for OpTimizAion)/UQ

—Framework for multi-level, parallel computation: ASCI-level problems,

optimization, nondeterministic analysis, response surface approximation,
design of experiments, optimization under uncertainty

 Polynomial Chaos and Stochastic Finite Elements
—Analysis of response of stochastic systems

* Epistemic Uncertainty

—Non-Probabilistic Approach, Probabilistic Approach, Model Uncertainty

e Sensitivity Analysis
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Provide uncertainty quantification tools to the analyst community in a unified
framework to be used in the design and certification processes.

Discipline independent
ASCI (Accelerated Strategic Computing Initiative)-scale problems
Minimize number of function evaluations

Flexibility in uncertainty model

Why tie UQ tools to the DAKOTA framework?

Existing, proven software framework

Successfully linked with over 20 application codes

Multilevel parallelism

Extensive optimization algorithm library (gradient and non-gradient)

Extensive selection of approximation strategies
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Answer fundamental engineering questions:
* What is the best design?
» How safeis it?
* How much confidence in my answer

DAKOTA
Optimization
Uncertainty Quant. B
Parameter Est.
Sensitivity Analysis
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Additional motivations:
* Reuse tools and interfaces
* Leverage optimization, UQ, et al.
* Nonconvex, nonsmooth design spaces — state-of-the-art methodologies
» ASCI-scale applications and architectures — scalable parallelism 2 X chgg;;g;guaﬁi
 Be apathfinder in enabling M&S-based culture change at Sandia
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Optimization/UQ Projects
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DAKOTA project (optimization with engineering simulations):
Sandia manager - David Womble, 9211, dewombl@cs.sandia.gov, 845-7471
Pl - Mike Eldred, 9211, mseldre@sandia.gov, 844-6479

Team members - Tony Giunta, Bill Hart, Bart van Bloemen Waanders
http://endo.sandia.gov/DAKOTA/

DAKOTA/UQ project (analytic reliability, sampling, and SFE UQ library):
Sandia manager - Martin Pilch, 9133, mpilch@sandia.gov, 845-3047
Pl - Steve Wojtkiewicz, 9124, sfwojtk@sandia.gov, 284-5482
Team members - Mike Eldred, Rich Field, John Red-Horse, Angel Urbina

SGOPT project (stochastic global optimization):
Sandia manager - David Womble, 9211, dewombl@cs.sandia.gov, 845-7471
Pl - Bill Hart, 9211, wehart@cs.sandia.gov, 844-2217
http://www.cs.sandia.gov/~wehart/main.html

PICO project (mixed integer programming, scheduling and logistics):
Sandia manager - David Womble, 9211, dewombl@cs.sandia.gov, 845-7471
Pl - Cindy Phillips, 9211, caphill@cs.sandia.gov, 845-7296
Team members - Bob Carr, Jonathan Eckstein (Rutgers), Bill Hart, Vitus Leung
http://www.cs.sandia.gov/~caphill/proj/pico.html

OPT++/DDACE/APPS/IDEA projects (NLP, sampling, & pattern search libraries):
Sandia manager - Chuck Hartwig(acting), 8950, hartwi@ca.sandia.gov
Pl - Juan Meza, 8950, meza@ca.sandia.gov, 294-2425

Team members - Paul Boggs, Patty Hough, Tamara Kolda, Leslea Lehoucq,
Kevin Long, Monica Martinez-Canales, and Pam Williams
http://csmr.ca.sandia.gov/~mezal/research.html
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Sampling Techniques:

« Random Sampling (Monte Carlo)

» Stratified Sampling (LHS (Latin Hypercube Sampling)
Analytical Reliability Techniques:

 Mean Value (MV), Advanced Mean Value (AMV/AMV+)

« FORM (First Order Reliability Method)/SORM (Second Order Reliabil-
ity Method)

Robustness Analysis

Sochastic Finite Element/ Polynomial Chaos Expansions

Response Surface Approximations:

* Application of UQ tools to a surrogate function to minimize
computational expense.
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Monte Carlo-Style (Sampling-based) Analysis:

* General, simple to implement and robust to size and discipline of
problem being investigated

« Easily wrapped around current deterministic analysis capabilities

« Computationally expensive (many function evaluations)

« Two current options:

—Traditional Monte Carlo
—Latin Hypercube Sampling

« Under investigation:
—Bootstrap Sampling

—Importance Sampling Techniques
—Quasi-Monte Carlo Simulation
—Markov Chain Monte Carlo
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 |nvolve atransformation to unit variance, uncorrelated normal ran-
dom variable space.

 Nataf Transformation used in DAKOTA/UQ.

« MV, AMV/AMV+, FORM all solve a constrained optimization problem
where the objective function is always this minimum distance func-
tion with the constraint function depending on the method.

« MV and AMV/AMV+ work in the original random variable space.

« FORM/SORM work in the transformed space.

 Equivalent to Polynomial Response Surface Techniques about an
“optimally” selected expansion point
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“Given the bounds on the input parameters, what range of output
function is possible?”

 Pose two global optimization problems:

gupper - m)?X g(M(f’X))

gl ower

min g(M(T, x))
such that

(xi)Lsxis(xi)U Ji=1...N

where N is the size of uncertain input vector, denote X and Xy its
lower and upper bounds, respectively.
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Sandia
National
Engineering Sciences Center
Answer:

Laboratories

g(u) L [glower’ gupper]

 Recently extended to mixed case of intervals and random variables of
unknown dependence (to appear in Wojtkiewicz, AIAA SDM 2002)
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Approximation of full stochastic representation

Represents a more general alternative to the Rosenblatt transforma-
tion

—avoid assuming full distribution when faced with limited input data
Estimating coefficients is the key issue

—requires realizations of the function it replaces
Convergence issues

—are there sufficient samples to compute coefficients?

—possibility of non-physical realizations

—mnean Sgquare convergence
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*Consider PCE of genera random process, u

P

u(x;dP) = u(x; CD)( ) = Z u(X)r (&), where P = z SEEH (m+r)D

T
—q|th order polynomial in &, where § = [El o oo Enj

—function of m underlying random variables
«Solve for the Fourier coefficients, u;(X)

[u(x, h[€]) [(€)0 [ ] J Ul hE]) Ti(§) T5(€)ag

4 )
T50 we T 5
© [~ J’FZ(E)fE(E)dE

9;(X) can be solved in closed-form
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*Epistemic Uncertainty results from a lack of information.

*Epistemic Uncertainty manifests itself in several ways

—Uncertainty in parameters for which statistically significant databases do
not exist
—The form of the model is not known exactly

Non-Probabilistic Approach
*Variety of approaches investigated:

—Interval analysis

—Possibility Theory

—Evidence Theory (Dempster-Shafer)
—Imprecise Probability

—Probability Bounds

—Interval-valued Probability Distributions
—Convex Sets of Probability Distributions
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* Problem statement

—During the penetration event, predict the probability of component failure, P

N
N
- \ -
.
N 1
e N

f=0 u = SRYw)
—» M(.;{a,D}) —>

N
N
N
QR
wind %{6 : ASCI FE codes

[]

-y M DE * structure - nonlinear transient dynamics
[]
[]

* boundary - nonlinear soil mechanics
* SRS- nonlinear filter

* 0, angle-of -attack

Uncertain parameters
D .
* D, soil parameter

—Consider a nonlinear, full-body, 3D, coupled-physics simulation with ssmplified
probabilistic properties.
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Component Response
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Why use SRS?
emeasure of shock severity; indicative of shock damage potential

«frequency-domain representation of shock response
long history of use in weapon design; test-based spec

eused for component qualification - compare to SRS,
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 Two design variables, X:
—0, angle of attack isanormal random variable with mean 1
and standard deviation of 1.

—D, soil depth isalognormal random variable with mean 25
and standard deviation 16.

U = min (SRS 4(f,) —SRYf)))
Z = g(U) = I1(0)

P = P(Z<0) = 1-E[g(U)]

e Using the results from simulations, build a approximate model

(response surface approximation) for U.



UQ analysis of Penetrator System
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* Apply MC/LHS to these surrogate models to evaluate F,(0):

N, = 1x10" and N_ = 5x10°

Response Surface

Approximation Method MC LHS
Kriging 0.02000/0.02300 | 0.02000/0.02400
Splines 0.06900/0.06781 | 0.06720/0.06767
Neural Net 0.05024/0.05588 | 0.05500/0.05581
Quadratic Polynomial 0.04960/0.05077 | 0.05070/0.05071
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Analytical Reliability Techniques:
MV, AMV, AMV+, FORM/SORM
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Current Capabilities

Sampling techniques:
*Pure Random Sampling (Monte Carlo)

«Stratified Sampling (LHS)

Probabilistic Robustness Analysis
Polynomial Chaos Expansions/Stochastic Finite Element Techniques
Future Capabilities:

Enhanced sampling methods:
sImportance Sampling, Bootstrap Sampling,

Quasi-Monte Carlo Sampling, Markov Chain Monte Carlo Sampling

Non-traditional uncertainty methodologies
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